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Abstract

We use industry data to determine whether crowding of the investment space is caused

by portfolio construction processes typical to the investment community. In particular, this
paper examines the extent that transaction cost models cause crowding of the investment space,

even when the investment models are completely unrelated to one another. We find that as

transaction costs become more significant in the portfolio creation process as portfolios increase

in size from $500 million to $5 billion, crowding actually declines for long-only portfolios and

mainly declines, but sometimes increases for market neutral portfolios. This research sheds more
light on how crowding develops through actions by players within the financial system.

JEL Classification: G0, G01, G02, G11

Key Words: risk management, crowding, crowded spaces, transaction costs, copycat trading,

quantitative equity portfolio management, optimal portfolios, portfolio construction

∗We would especially like to thank David Card, Rowilma del Castillo, and Chris Paciorek and the Econometrics
laboratory at UC Berkeley for making this research possible. I would like to especially thank Jozsef Losonczy for
helpful comments. We would like to thank Gabriel Baracat, Dan deBartolomeo, Mark Carhart, Wolfgang Chincarini,
Matt Dixon, Steve Gaudett, Ralph Goldsticker, Steve McQueen, Steve Greiner, Paul Intrevado, Christopher Mar-
tin, Terence Parr, Deborah Berebichez, Zach Shockley, Shamin Parikh, Joseph Lieto, Vikas Kalra, Jose Menchero,
Chris Martin, Daehwan Kim, Michael Chigirinskiy, Saurabh Harsh, Thomas Grossman, Steve Dyer, Dessislava
Pachamanova, Dieter Vandenbussche, Robert Almgren, Fernando Comiran, and Chris Canova. Contact: Ludwig
Chincarini, CFA, Ph.D., is an Associate professor of finance at the University of San Francisco School of Manage-
ment and Director of Quantitative Strategies for United States Commodity Funds, Office MH 117, University of San
Francisco, School of Management, 2130 Fulton Street, San Francisco, CA 94117. Email: chincarinil@hotmail.com

or lbchincarini@usfca.edu. Phone: 703-585-0336.



 Electronic copy available at: http://ssrn.com/abstract=2814526 

1 Introduction

Financial crises have various causes, but they are frequently caused or at least amplified by trade

crowding in the investment space (Chincarini (1998), Chincarini (2012)). Crowding can take place

through a variety of mechanisms. First, if investors follow similar trading models, it is likely that

their resulting portfolios will be very similar. Investors may arrive at similar models either by

coincidental or outright replication of each other’s ideas. Thus, trading spaces can become crowded

because too many investors are constructing portfolios using similar expected return models. The

key feature that makes the space crowded is that too many assets are chasing a strategy compared

to the availability of liquidity. For example, if a large proportion of manager’s of a given type own a

large percentage of shares of a stock relative to the stock’s typical turnover, this may be a crowded

space.

Crowding may also occur, ironically, when investors use similar techniques to construct their

portfolios. Investors can have different models for generating their expected returns, but if they

use the similar techniques for constructing their portfolios, this can also cause their portfolios to

converge to one another. One component of building portfolios is to consider explicitly or implicitly

the costs of trading securities. If portfolio managers all face similar transaction cost models, then

their portfolios might be more similar than they would want.

Crowding is a problem for investors because it alters the risk and return dynamics of a trade

(Cahan and Luo (2013), Ibbotson and Idzorek (2014), Menkveld (2014), and Pojarliev and Levich

(2011)). Specifically, it makes the risk of a trade endogenous to the trade itself. Many hedge

fund managers and quants argued that the quant crisis of 2007 was caused by crowding.1 Some of

them argued that it was crowding of the alpha models (Cerla (2007), Khadani and Lo (2007), and

Rothman (2007)), while others argued that it was really about liquidity and that transaction cost

models may have crowded the types of trades they made (Chincarini 2012). That is, with large

portfolios, market impact costs might lead many quant funds to trade only a handful of very liquid

securities subsequently causing extreme movements in these select stocks when managers decided

to sell.

Crowding among quants happens for several reasons, but the transaction costs model was of

primary importance, as it caused us to trade similar securities at each point in time.— Mark
Carhart interview, Former Co-CIO of Quantitative Strategies at GSAM and Founder of Kepos
Capital, October 11, 2011. (Chincarini (2012))

1For a first-hand account of the crisis, see chapter 8 of Chincarini (2012).

1



 Electronic copy available at: http://ssrn.com/abstract=2814526 

This paper studies the interactive role of transaction cost models, portfolio construction, and

crowding. This paper makes several contributions to the literature on crowding. First, the paper

helps to clarify the role that transaction cost models might play in causing the crowding of the

investment space. Second, the paper introduces a simple method to approximate transaction costs of

several varieties so as to use them in portfolio optimization construction. This approximation is very

accurate and very simple to use, allowing practitioners to model a variety of complex transaction

costs within a standard portfolio optimization framework. These issues of transaction costs and

crowding are important ultimately for understanding the systemic risk from fund management

practices and how portfolio formation may lead to fragile investment conditions. We find that

crowding and transaction costs may not be related in the way that many portfolio managers believed

them to be.

The paper is organized as follows: Section 2 we first define a measure of crowding that will be

used in this paper; Section 3 describe our empirical framework for examining the crowding from

portfolio construction and transaction costs; Section 4 describes the transaction cost models used in

order to construct portfolios; Section 5 discusses the empirical results from the simulated portfolios;

and Section 6 concludes the paper.

2 A Definition of Crowding

For the purposes of this paper we define crowding to be when investors own portfolios with similar

holdings. Let the similarity between two portfolios be measured by sij , which is the dot product

between the position weight vectors (w) of each portfolio i and j divided by the product of the

Euclidean norm of each vector. Thus,

sij =
w′

iwj

|wi||wj|
(1)

where the Euclidean norm is defined across N assets as

|wi| =

√√√√
N∑

n=1

w2
in (2)

This measure will have a value between 0 and 1 for portfolios that can only be long securities
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(i.e. long-only portfolios). This measure will have a value between -1 and 1 for portfolios that can

have negative weights.2

In our paper, we will study more than just two portfolios. Thus, for studying a group of M

portfolios, we define the N -by-M portfolio holdings matrix as the matrix, H , which consists of

columns of position weight vectors on N assets for each of M portfolios. The similarity matrix

amongst all portfolios is computed as

S =
(
H ′H

)
◦ ˆ̂

H (3)

where ◦ represents the Hadamard product or the element-by-element multiplication of the matrices,

and

ˆ̂
H =




1
ĥ11

1
ĥ12

... 1
ĥ1M

... ... ... ...

1
ĥM1

1
ĥM2

... 1
ĥMM


 (4)

and Ĥ = |H |′|H |, where |H | contains the Euclidean norm of each manager’s weight vector. The

matrix S contains the similarities of each portfolio with every other portfolio. For example, element

S12 represents the similarity of the portfolios of managers 1 and 2. For a specific set of portfolios,

our measure of crowding is given by the average of the off-diagonal elements of this matrix.3

From the similarity matrix of M portfolios or portfolio managers, we measure the crowding, C,

amongst the group of portfolios as the average similarity between portfolios.4

2This measure is related to a more commonly used measure known as Pearson correlation. One can think of
Pearson correlation as a de-meaned version of Cosine Similarity.

3The diagonal elements are the similarity of each portfolio with itself, which are irrelevant. Our measure of the
similarity of portfolios to measure crowding is related to a more commonly known cosine similarity, which is a measure
of the similarity between two vectors of an inner product space that measures the cosine of the angle between them.

This measure is given as θ = cos−1

“

w
′

iwj

‖w′
i‖‖wj‖

”

.
4Essentially, the numerator represents the summation of all the similarities between every portfolio manager and

every other, including it’s own. By subtracting m, we normalize this measure to be the average similarity in excess of
a group of portfolio managers that are completely dissimilar to each other. In that case, the similarity matrix would
be a diagonal of 1s.
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C =

M∑

i=1

M∑

j=1

Si,j − M

M2 − M
(5)

A simple example with a universe of three portfolios holding 3 stocks each might help to illustrate

the concept of crowding. Suppose our matrix H of manager holdings is given as

H =




0.4 0.8 0.45

0.4 0.1 0.45

0.2 0.1 0.10


 . (6)

This example includes the portfolios of 3 managers. Each manager has a portfolio whose holding

sum to 1. The portfolio of manager 1 has 40% in stock 1, 40% in stock 2, and 20% in stock 3.

Portfolio 2 has 80% in stock 1 and 10% in stocks 2 and 3. Portfolio 3 has 45% in stock 1 and 2 and

10% in stock 3.

One can see that manager 1 and manager 3 have very similar or “crowded” portfolios. Manager

2’s portfolio is less related to the other two. Using our formula for computing the similarity matrix,

we find that5

5The components of S are given by,

H
′
H =

2

4

0.36 0.38 0.38
. 0.66 0.415
. . 0.415

3

5 .

Ĥ =

2

4

0.36 0.4874 0.3865
. 0.66 0.5234
. . 0.4150

3

5 .

and

ˆ̂
H =

2

4

2.778 2.0515 2.5872
. 1.5152 1.9108
. . 2.4096

3

5 .
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S =




1 0.7796 0.9831

. 1 0.7906

. . 1


 . (7)

The resulting similarity matrix corresponds with our intuition. That is, portfolios 1 and 2 have

a similarity measure of 0.7796, which is high, but not as high as portfolios 1 and 3, which have

a measure of 0.9831. For this universe of portfolios, the crowding measure is C = 0.8454. This

indicates that there is a high level of similarity or crowding in the investment space from these 3

portfolio managers.

In addition to capturing the crowding of a group of portfolios or portfolio manager holdings, we

also wish to study specifically how the portfolio construction process creates additional crowding in

the investment space. One way to do this is to measure the crowding of portfolios before the portfolio

construction process and after the portfolio construction process. Specifically, if we were able to

observe the expected return models or alpha models of portfolio managers before they assigned

weights to their portfolios, we could infer the amount of crowding that is added or removed from

portfolio construction techniques.

Let’s define Sα as the similarity matrix of portfolio managers from their alpha models. This is

the similarity of their stock picking models, whether quantitative or qualitative managers. Define Sp

as the similarity of portfolios after the manager has combined his alpha model with his optimization

model to construct his final portfolio. Thus, Sp is the similarity matrix of actual portfolio holdings.

Both measures are computed as described previously. For both Sα and Sp, the crowding measures

are also computed and given by Cα and Cp. In our analysis, we will compute the ratio of these two

as

Ω =
Cp

Cα
. (8)

When this ratio is greater than one, it means that the portfolio construction process has caused

portfolios to become more crowded than they were just from the different portfolio manager beliefs

about the attractiveness of different stocks and vice versa. In other words, this metric represents
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how much more similar on average the portfolios are than the expected return models.6

In our simulation analysis, we will look at the crowding of portfolios, C, as well as the ratio of

crowding before and after portfolio construction, Ω.

3 The Empirical Framework

Our strategy to analyze the real-world implications of crowding from the portfolio construction

process is to simulate the construction of portfolios using random alpha signals combined with

real-world risk models and realistic transaction cost models in order to examine the extent of

crowding that occurs indirectly due to the transaction cost considerations of portfolio managers.7

The data for our empirical study was obtained from several sources. We obtained all stock return

from Factset. We obtained our risk model data from the three major risk model providers in the

financial industry; Barra, Axioma, and Northfield.

In this section, we discuss the techniques of our simulation process, including the creation of our

expected return or α models for stocks, the risk models, and the portfolio construction techniques.

3.1 Portfolio Construction

In order to examine the extent of crowding from the portfolio construction process due to transaction

cost considerations, we created portfolios that were more common in the professional investment

world. We considered two types of portfolio management techniques; a long-only portfolio and a

market-neutral portfolio.8

The long-only portfolio manager maximizes net expected return (i.e. returns after transaction

costs) while keeping a portfolio that has a volatility equal to the historical volatility of the S&P 500,

6We could have also taken the average of the absolute values in this similarity matrix. This would not be as
representative of crowding itself, but would also be important for a measure of financial fragility. That is if 50% of
managers are long a portfolio and 50% of managers are short a portfolio, our current measure would have a lower
level of crowding than the absolute measure. However, this particularly extreme case might indicate a very fragile
financial system when crowding is considered in this broader context. One could also consider measuring the absolute
value of stock weights when computing the similarity matrix, however, this would not represent crowding as much as
it would represent activity in similar stocks.

7The procedures used are very similar to those used by sophisticated portfolio managers. For example, Goldman
Sachs quant equity group managed portfolios in a similar way. “Our approach to portfolio construction uses these
individual company alphas in combination with other optimization criteria with the goal of maximizing each portfolios
risk-adjusted expected return net of transaction costs. The inputs to our optimization process are return forecasts,
transaction cost estimates, risk estimates, and of course, client objectives. Our risk model and risk forecasts are
central to the optimization process.” (Daniels (2009)).

8For more details on the optimization process, see Appendix B
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is not levered, has a maximum stock weight of 10% in any one name, and whose sector composition

matches that of the benchmark.9 We also consider the same long only portfolio manager, however,

rather than maximize alpha subject to a risk target, the portfolio manager minimized risk subject

to an net expected return target.10

The market-neutral manager maximizes expected return subject to having no more than 5%

volatility over the risk-free rate, a dollar-neutral portfolio (i.e. the weights of the longs sum to the

weights of the shorts), a leverage of 2 (i.e. the weights of the long portfolio sum to 1 and the weights

of the short portfolio sum to 1), that no stock can have a weight less than -10% or more than 10%,

and that the stocks are sector neutral with respect to the long and short side of the portfolio.11 We

also considered a market neutral manager that minimized the volatility of the portfolio subject to

a target alpha.12

For both types of portfolio construction, we also considered liquidity constraints, that is we

constrained the manager to not purchase too much of a certain portfolio with respect to the average

daily trading volume, but did not report these results in the paper.13

3.2 The Alpha Model

In order to focus on the amount of crowding that is caused from the portfolio construction process

when considering transaction costs, we used random alpha models for the different portfolios. That

is, each portfolio receives signals about the stock universe that are random. Thus, the degree of

crowding from the alpha models, prior to portfolio construction, has an average value of zero.

9These portfolio parameters are quite reasonable. In fact, we surveyed several portfolio managers before creating
our parameters. We also experimented with other maximum and minimum weights for the portfolio. The benchmark
portfolio for the purposes of sector neutralization was the top 2000 companies selected by market capitalization each
month and weighted by market capitalization.

10The target for the randomly generated models was chosen as half of the S&P 500 5-year historical volatility.
There was no specific reason for these choices, except that they seemed to be reasonable. If a specific target could
not be achieved, we searched for the next reasonable target.

11These portfolio parameters are quite reasonable. In fact, we surveyed several portfolio managers before creating
our parameters. While it is true that different managers may use slightly different parameters, the main purpose
of this paper is to describe the potential crowding effects that may occur when portfolio managers use reasonable
parameters and similar risk models.

12The target alpha was the same as with the long only case.
13We did not include liquidity constraints the randomly generated alphas, because for large portfolios, liquidity

constraints could not be kept at the 30% level of average daily trading volume (ADV). They had to be increased up
to 70% for the portfolio optimizer to solve. For market neutral portfolios with 2x leverage it was even more difficult
to satisfy these constraints. This has interesting implications for portfolio management. As a portfolio increases in
size and one seriously considers liquidity constraints, the portfolio manager must either accept to trade over several
days and accept an increasing position over time or the portfolio manager must increase the portfolio tolerance as a
function of average daily trading volume. Both of these increase the problems with liquidity and crowding in an exit
situation.
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In order to construct the random alpha signals for each portfolio manager, we drew 100 random

alpha signals for all stocks from a normal distribution, α ∼ N (0, Σα), where Σ is the historical

variance-covariance of asset returns up to the time of portfolio selection with the off-diagonals set

to 0.14 That is, we used the historical volatility of each asset, but ignored the correlations.15

3.3 The Risk Models

Crucial to the portfolio management process is the use of a risk model for the securities. In order

to understand how crowding occurs in the financial system from the portfolio construction process,

we used the leading risk models in the industry to build portfolios.16

Most professional money managers use standard third-party risk models to manage their port-

folios. The most well-known risk models are that of MSCI-Barra, Northfield, and Axioma.17 In

this paper, we use the the Barra US Equity Model (USE4) which has has been active since June

30, 1995.18 We also use Northfield’s U.S. Fundamental Equity Risk Model which has been active

since January 30, 1990.19 Finally, we use Axioma’s Robust Risk Model for the U.S. which has been

active since January 4, 1982.20 Barra is believed to lead most providers with around a 50% market

share.

All of these risk models are multi-factor models. That is, these factor models assume that asset

returns can be modeled as a linear combination of common risk factors (Ross (1976), Chincarini and

Kim (2006)). The three risk models differ by the factors chosen and other estimation techniques.

We use the three prominent risk models in the industry to reconstruct the variance-covariance

14The reason for choosing 100 random draws rather than a larger number had to with the tradeoff between
sufficiently large and the computation time required. To create the 100 random portfolios for twelve months of data
took 20 days on a supercomputer that used twelve cores.

15Further research might wish to consider a random model which draws from a standard normal distribution,
α ∼ N(0, 1), where signals for individual assets are independent of their historical volatility. Further research may
also wish to consider a model that draws from a full variance-covariance matrix of asset returns rather than just the
diagonals.

16In order to allow for comparisons across risk models, we match all data across risk model providers and the top
2000 stocks by market capitalization every month of the analysis. We matched the data by CUSIP identification.

17The majority of asset managers use either Barra, Northfield, or Axioma and thus are a very representa-
tive group (Fabozzi et. al (2007) and Fabozzi and Markowitz (2011)). Other providers include APT and
R-squared. APT’s Market Risk Model for the US has been active since January 2000. For more info,
see http://www.sungard.com/campaigns/fs/alternativeinvestments/apt/solutions/apt market risk models.aspx. R-
Squared Customized Hybrid Risk Model (CHRM) has been active since June 29th, 2007. For more info, see
http://www.rsquaredriskmanagement.com/Customised-Hybrid-Risk-and-Return-Models.

18For more info, see http://www.msci.com/products/portfolio management analytics/equity models/barra
us equity model use4.html. BARRA has another popular risk model , the Barra US Equity Model (USE3), which
has been active since 1973.

19For more info, see http://www.northinfo.com/documents/8.pdf.
20For more info, see http://axioma.com/robust.htm.
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matrix of asset returns that real-world portfolio managers would be using to build their optimal

portfolios so that we can get an accurate estimation of the crowding that may or may not occur

through the portfolio construction process.

4 Transaction Cost Models

Transaction costs are broken down into two categories. These include fixed costs (or those easily

observed in the market place) and variable costs (those that are less observable and therefore require

more modeling to estimate).

Fixed transaction costs will typically include a per share commission that the manager must

pay to the broker to execute the trades. It is reasonable to estimate a cost of $0.005 per share for

commissions. Additionally, there is the issue of the bid/offer spread. Since we know that market

makers make money on trades through the spread, it is reasonable to assume that a manager will

pay the offer on purchases and receive the bid for sales. These costs are assumed to be more or less

constant costs that do not vary much with the size of the trade.

Variable transaction costs will typically include an estimate of the likely impact of the size of

the trade on the price. There is a positive relationship between the size of a trade and market

impact. However, the relationship is not always linear. As trades increase in size up to and beyond

a certain threshold, the estimated market impact will increase at an increasing rate. For example,

a trade that is two times the average daily trading volume (ADTV) is likely to have more than two

times the market impact as a trade that is equal to the ADTV.

Transaction costs have the potential to contribute to crowding. While the fixed costs are not

likely to vary with the size of the trade, the variable costs will vary and can affect the final positions.

For large portfolios, the transaction costs for assets with low ADTV are likely to be high and the

positive gross alphas will become smaller (and possibly even negative) after transaction costs. The

final portfolios are less likely to include these names. For assets with higher ADTV, more of the

positive gross alpha will translate into positive net alpha and we are more likely to see these names

included in the final portfolios. When multiple managers use the same transaction cost model,

there may be crowding in liquid assets.
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4.1 Model 1

In order to study the impacts of the transaction costs or market impact models on crowding, we

use two market impact models. The first model is a structural model estimated from U.S. equity

data (Almgren, Thum, Haptmann and Li (2005)). The model for market impact on trading is given

by:21

cit =
I

2
+ sgn(nit)ησit

∣∣∣∣
nit

VitT

∣∣∣∣
3/5

(9)

where I = γσit
nit
Vit

(
Nit
Vit

)1/4
, γ = 0.314, η = 0.142, σit is the daily volatility of stock return i at

the beginning of month t, Nit is the total amount of shares outstanding in the security, Vit is the

average daily trading volume of the stock (shares traded, not dollars traded), T is the time interval

in which the trade takes place in number of days, for this paper we use T = 1, and nit represents

the number of shares of the security the portfolio is trading.22

4.2 Model 2

The second model is the Northfield model for transaction costs which has been available since

March 2009 (see Northfield (2012)). This model of market impact is estimated every month by

Northfield with dynamically generated parameters for each stock. The model is of the form,

cit = Bit|nit| + Cit|nit|0.5 (10)

where Bit and Cit are parameters estimated by Northfield, nit is the number of shares to be

purchased for security i in month t, and cit is expressed in terms of percentage price movement.23

4.3 Spreads

For both market impact models, we add the percentage spread cost of trading, by adding a term

equal to the bid-ask spread divided by 2 divided by the current stock price multiplied by 100. Thus,

21For the purposes of this paper, the preciseness of the transaction cost model is not crucial. Any model of the
form, cit = s

2
+ nit

Vit

φ
ψ will be sufficient, where s is the bid-ask spread and φ and ψ are parameters that need to be

estimated.
22The parameter symbols have been changed from the original paper so as to be more consistent with symbols in

this paper.
23Northfield prefers to use the symbol Sit to represent the shares traded.
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the final transaction cost model is given by

tcit =

∣∣∣∣
100sit/2

pit

∣∣∣∣ + |cit| (11)

where sit is the bid-ask spread of stock i at time t. These transaction costs, tcit are in percentage

points.

For example, for December 2013, take two stocks, AT&T (Ticker Symbol: T), a very liquid

stock, and AGL Resources (Ticker Symbol: GAS), a less liquid stock. AT&T for this particular

period had a market capitalization of $183 billion, a stock price of $35.16, and a 10-day average

daily trading volume of 18,930,000 shares. The spread was 1 cent or a 0.0284% spread. The trading

costs in percentage terms for a 1% position in a $500 million portfolio was 0.0232%. That is, a $5

million trade of AT&T representing 142,000 shares would cost the trader $1,160. This does not

represent commissions, it is simply the market impact and spread costs. AGL Resources for this

particular period had a market capitalization of $5.6 billion, a stock price of $47.23, and a 10-day

average daily trading volume of 490,000 shares. The spread was 2 cents or a 0.0423% spread. The

trading costs in percentage terms for a 1% position in a $500 million portfolio was 0.1621%. That

is, a $5 million trade of AGL Resources representing 105,865 shares would cost the trader $8,105.

4.4 Approximation of Transaction Costs for Optimization Model

The transaction cost models used in this paper are difficult to use in a standard optimization

framework. In the case of transaction cost model 1, it is not usable even in the leading software

provider platforms for portfolio optimization, like Axioma, Northfield, and BARRA.24 In this paper,

I present an easy to execute and remarkably reliable approximation to transaction costs, which could

prove useful for practitioners needing to deal with a variety of transactional cost models. In this

paper, an approximation method is used for the transaction costs. First, the transaction costs are

computed for each stock in the portfolio by varying the portfolio weight of each stock from zero to

0.10 (the maximum possible value for any stock in the portfolio) for each net asset level. Second,

a regression is run on each stock of the following form:

24When I began working on this paper, I considered partnering with the research staff at Axioma and the research
staff of other commercial portfolio optimization software providers to alleviate the work load. However, they informed
me that their systems would have trouble incorporating certain transaction cost models, like transaction cost model
1. BARRA and Bloomberg also do not support such a functional form, although they can be tweeked to approximate
the costs within a given range of trade size.
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t̃cit = aitwit + bitw
2
it (12)

where t̃cit is a vector of net transaction costs from the transaction model corresponding to each

stock’s particular weight, ait and bit are parameters estimated from the linear regression.25 That is,

t̃cit represents the percentage transaction cost of each stock multiplied by the stock’s weight, wit,

representing the net transaction cost impact of each stock at each weight to the entire portfolio.

This approximation model works extremely well for all stocks.26 For example, the maximum

and minimum R̄2 for all stocks in December 2013 is 1 and 0.9998 respectively. The approximate

cost model works very well at estimating the transaction costs of each stock. Figure 1 shows the

actual transaction costs and approximate transaction costs for AT&T for December 2013. The

approximation is excellent with α̂ = 0.0206, β̂ = 0.5096, and R̄2 = 0.9999. Figure 2 shows the

actual and approximate transaction costs for AGL Resources. The approximation is excellent with

α̂ = 0.0697, β̂ = 0.11.1110, and R̄2 = 0.9999.

[INSERT FIGURE 1 ABOUT HERE]

[INSERT FIGURE 2 ABOUT HERE]

5 Empirical Simulation

5.1 Methodology

Given these realistic portfolio construction techniques described in the previous sections, we con-

structed 100 optimal portfolios for every risk model and for every month in our sample period from

a security universe of the largest 2000 publicly traded stocks in the United States.27 In every month

of the sample, each portfolio was constructed from 2000 random alpha signals. For each group of

portfolios, four market scenarios were considered. In scenario 1, all of the portfolios were con-

structed without considering transaction costs. In scenario 2, each portfolio was assumed to have a

total of $500 million in assets under management (AUM). In scenario 3, each portfolio was assumed

25There is a different ait and bit for every net asset level, since the transaction costs of each stock vary with assets
under management.

26The Weierstrass approximation theorem states that every continuous function defined on a closed interval [a, b]
can be uniformly approximated as closely as desired by a polynomial function. In the case of the transaction costs
functions used in this paper, a quadratic function is sufficient for a very good approximation.

27This security universe was updated every month in our sample period.
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to have a total of $5 billion in AUM. In scenario 4, each portfolio was assumed to have a value of

$20 billion in AUM. Since the market impact (a primary driver of transaction costs) is driven by

the size of the trades, adjusting the value of portfolios from $500 million to $20 billion in AUM

allows for a comparison of how transaction costs affect crowding during the portfolio construction

process. The transaction costs are estimated for every stock and the approximation parameters are

re-estimated for every size scenario, since they naturally would change as the portfolio size changes.

The portfolios are rebalanced once per month.28 For each scenario, the optimal portfolio weights

are stored for all 100 portfolios in every month. These weights are used to measure crowding in

each of the four scenarios.

Our analysis of these simulated portfolios covered the period 2006 to 2013 for transaction cost

model 1 and March 2009 to 2013 for transaction cost model 2.29 The reason that we used a different

time period for transaction cost model 2 is that it was created by Northfield in 2009 and did not

exist prior to this date.

5.2 General Results

Tables 1 and 2 report the crowding measures by optimization framework (e.g. Long Only portfolio),

by risk model 1, 2, or 3, with and without transaction costs, and by average size of the portfolio.30

We also show in the tables, the maximum weight in any given portfolio, the minimum weight in

any given portfolio, and the average number of stocks in the portfolios that are constructed. We

split the analysis into two periods since one transaction cost model only existed from March 2009

until 2013. For both periods, 2006 to 2009, and 2009 to 2013, independent of risk model used,

as the average portfolio size increased from $500 million with no transaction costs to $5 billion

with transaction costs, the average crowding declined. This is true for both market neutral and

long only portfolios. Crowding amongst managers only starts to increase when the average size

of the portfolio moves from $5 billion to $20 billion. Even in this case, crowding is greater when

28Portfolio managers may not trade as often or as strictly as the simulation does, however, the point of the research
is to examine how portfolio construction and transaction costs affect crowding and thus a controlled setting is required.

29We have data for a longer time period, but the simulations take an enormous amount of time to compute and
thus we limited our sample from 2006 to 2013. For example, the 100 random alpha portfolios can take 20 days to
complete one historical year of analysis when running on 12 processors in parallel.

30The empirical part testing of the crowding induced by risk models was extremely complicated. In order to
dynamically simulate the portfolios, we had to create an entire program to do professional portfolio optimization.
We used MATLAB 2014a and CPLEX from IBM through the MATLAB API to perform the empirical analysis. The
random simulations took an enormous amount of time to run. For example, to obtain the results for one year of data
took 20 days when running the program on 12 parallel processors.
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transaction costs are not considered at all compared to when they are considered with portfolios of

size $20 billion (see columns 2, 8, and 14 of Tables 1 and 2). For example, from 2006 to 2009, for

risk model 1 and long-only portfolios, crowding is 0.58 with $500 million dollar portfolios and no

transaction costs and 0.50 with portfolios of $20 billion in size when considering transaction costs.

For risk model 2 and risk model 3, the numbers are 0.60 and 0.43 and 0.59 and 0.46 respectively.

The qualitative results are similar for the period 2009 to 2013 and also similar for both transaction

cost model 1 and 2. Thus, the average crowding for long portfolios declines as portfolios get large,

even though transaction costs are increasing.

In order to establish statistical significance, we also tested whether the average crowding with

transaction costs was significantly different. In almost all cases, the average crowding when con-

sidering transaction costs was significantly lower than not considering transaction costs at the 99%

confidence level. In Tables 1 and 2, this is indicated by ∗∗∗ (99% confidence level) and ∗∗ (95%

confidence level). We also tested whether the average crowding from portfolios with $20 billion and

hence more transaction costs was significantly smaller than portfolios with $500 million in assets,

and found that it was for all of the long-only portfolios during the period 2006 to 2009, but only

for risk model 1 and 3 during the period 2009 to 2013.

[INSERT TABLE 1 ABOUT HERE]

[INSERT TABLE 2 ABOUT HERE]

The crowding measure for market neutral portfolios was generally much smaller than for long-

only portfolios. Thus, in order to examine the effect of transaction costs, we focused mainly on the

measure of omega (Ω). Omega measures the crowding of the constructed portfolio to the crowding

of the random alpha signals. Thus, a value greater than 1 indicates that the portfolio construction

process led to more crowding than the alpha models amongst portfolios. The higher the value of

omega, the more crowding that occurs from portfolio construction.

For market neutral portfolio managers, the evidence is similar. For portfolios of size $500

million to $5 billion, relative crowding (Ω) decreases when considering transaction costs. As the

average portfolio size increases to $20 billion, relative crowding is generally higher than portfolios

of smaller size for the period 2006 to 2009, but once again lower for the period 2009 to 2013. For

example, for the period 2006 to 2009, the average relative crowding is almost double for a portfolio

of size $20 billion than for portfolios that do not consider transaction costs using risk models 1
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and 3 (see columns 3 and 15 of Table 1). However, for risk model 2, crowding declines. For the

2009 to 2013 period, relative crowding generally declines as the portfolio grows from $500 million

without considering transaction costs to $20 billion. For risk models 2 and 3, the no transaction

cost measure of relative crowding is 55 and 63 compared to 28 and 45 using transaction cost model

1. Only for risk model 1 is relative crowding greater for the $20 billion dollar average portfolio

compared to the $500 million dollar average portfolio without transaction costs.

We also tested for the statistical significance of the differences in average crowding for market

neutral portfolios. We found no statistical difference in the average crowding. Thus, although

average crowding generally declines with transaction costs for market neutral portfolios, the lack of

significance implies that transaction costs probably did not play a large role in crowding at these

asset levels.

One may also notice the large negative pseudo-Sharpe ratios. When portfolio managers fail

to consider transaction costs ex-ante, the ex-post Sharpe ratios are dramatically negative. For

example, using risk model 1, the Sharpe ratios for a portfolio that doesn’t consider transaction

costs is -42.65 and -1.12 for long only and market neutral portfolios (see Table 2, column 4) versus

-7.13 and 0.79 for portfolios that considered transaction costs ex-ante. This is exactly what would

be expected. For the long only portfolios, the average Sharpe ratios are positive in the second

period from 2009 to 2013, but not for the market neutral portfolios.

Figures 3 to 5 show the way crowding changes over time. For long-only portfolios, for most of

the period between 2006 and 2013, the crowding from the largest portfolios considering transaction

costs (red line) is lower than that of the smaller portfolios that do not even consider transaction

costs (blue dotted line). However, in 2006 and in 2013, this was reversed (see Figure 3). This

general pattern seems to be true for all risk models used (see Figure 4).

Figure 4 shows that for most of the time, the relative crowding for market neutral models

without transaction costs is in-line with large portfolios that consider transaction costs, except for

certain brief periods, where the relative crowding of large portfolios increases enormously. These

particular periods are driving the average results discussed in the tables.

5.3 Implications

The crowding of investment in securities can lead to similar positions by similar investors that

may eventually lead to a cascade when investors must rebalance their portfolios. Rebalancing
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cascades might occur when investors follow similar benchmarks (Chinco and Fos (2016)), when

they follow similar investing strategies, or even as an unintended consequence of using similar

methods to build portfolios. One of the ways that portfolios can become very similar is due to the

portfolio construction process, like the use of similar transaction cost models to manage the direct

drag (spreads) and the indirect drag (market impact) from trading securities. The simulations in

this paper provide evidence that as equity portfolios grow in size from $500 million each to $5

billion each, crowding actually declines. Thus, for portfolio managers managing less than $5 billion

and using similar transaction cost models and reasonable portfolio construction parameters, the

unintended crowding from transaction cost models in the equity space may not be a worry. However,

as the value of portfolios approaches $20 billion, crowding due to transaction cost parameters starts

to increase and should be of concern. Of course, this will also depend on the number of managers

in the space compared to the asset universe.

The results of the paper show that portfolio managers acting independently may lead to crowd-

ing. It also shows something else that is interesting and that can be understood by comparing

the $500 million case with the $20 billion case. If portfolio managers construct portfolios using

a larger asset base than their own portfolio value to estimate transaction costs, this may lead to

portfolios constructed that have less crowding than if they only consider the actual size of their

own portfolios. Considering a larger asset base for transaction costs in portfolio construction would

make sense if they recognize many similar investors to themselves that might rebalance or trade at

a similar time as them.

One of the explanations for lower crowding due to transaction costs as portfolios grow from

$500 million to $5 billion is that as market impact costs become larger in a portfolio, it makes

trading large amounts of particular stocks incredibly costly due to the non-linear nature of market

impact costs. Thus, a portfolio optimizer will find it advantageous, ceteris paribus, for portfolios

to trade very small amounts of many more stocks.31 Of course, this is absent any particular alpha

considerations. This logical behavior of the optimizer will result in less crowding amongst similarly

optimized portfolios up to a certain portfolio size relative to the security universe.32

31A portfolio manager might split up the order over several days, but market impact is still present to a degree,
since this is just a scaling of the magnitude of the impact. Even if a portfolio manager builds their positions over
several days, they are essentially crowding the investment space regardless and may be in jeopardy when a shock
arises that requires them to sell quickly.

32Of course, there is a complicated relationship between the optimization parameters, the alpha signals, and the
constraints of the optimization problem.
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The results also indicate the importance of considering transaction costs in portfolio optimiza-

tion. These costs should be considered not only with respect to the size of one’s own portfolio, but

also with a consideration of the size of similar types of investors. Some portfolio managers do not

even consider transaction costs in their portfolio construction, which can cause low ex-post returns

as well as unintended crowding. Dan deBartolomeo, the CEO of Northfield, has said “There is

a disconnect in the industry between portfolio construction and trading and many portfolio man-

agers leave the issue of transaction costs to the trading team.” Portfolio managers who do ignore

transaction costs may create “crowding” due to transaction costs that will only be realized ex-post

when it is too late.

The results of this paper indicate that crowding can occur from transaction cost considerations

in equity portfolios as the size of the portfolios becomes very large relative to the size of the equity

space — in this paper we considered the top 2000 U.S. equities by market capitalization. The results

also indicate that considering more than one’s own portfolio when accounting for transaction costs

might actually reduce transaction costs across a group of similar managers. However, there are

limits to this benefit. As portfolios and the group of portfolios grow in size beyond $20 billion or

beyond the capacity of their stock universe, crowding will be unavoidable. However, it is still better

to consider transaction costs ex-ante, rather than realize them in spades ex-post.

6 Conclusion

The links between market participants is gaining more notice in the financial community. The

behavior of market participants can lead to a change of equilibrium prices that depart from fun-

damentals and leave a trading space vulnerable for a collapse. One of the ways in which a trading

space can become crowded is through portfolio managers copying each other’s trade ideas or im-

plementing similar trade ideas that lead to similar positions. The crowding of the investment space

may lead to a mis-measurement of risk. Another way in which portfolio managers might find it

difficult to trade positions is that their positions have become concentrated due to using similar

transaction cost models. For example, suppose two portfolio managers wish to trade two stocks.

Portfolio manager 1 likes stock A and portfolio manager 2 likes stock B. Ignoring diversification

issues, portfolio manager 1 would like to buy 70% of A and 30% of B, while portfolio manager 2

would like to buy 30% of A and 70% of B. However, if stock B has a large transaction cost relative

to A, then both managers might tilt more towards A. In fact, the result might be that portfolio
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manager 1 buys 75% of A and portfolio manager 2 buys 70% of A, which causes crowding and

ironically may lead to ex-post trading costs being even larger than ex-ante trading costs. Thus, it

may be the case that transaction costs impose some sort of crowding.

When portfolio managers using independent alpha models account for transaction costs, it

actually leads to less crowding or an insignificant amount of additional crowding from individual

portfolio sizes of $500 million to $5 billion, however crowding starts to increase beyond $20 billion

for a U.S. stock universe of 2000 companies. For long only portfolio managers, we find that the

average crowding from portfolios with no transaction costs compared to portfolios that consider

transaction costs with an average size of $20 billion is 9% to 22% more. For market neutral

portfolios, we find no statistical difference in the average crowding up to $20 billion in portfolio

size. Portfolio managers during the quant crisis of 2007 mentioned transaction costs as a potential

cause of crowding during the crisis (Chincarini (2012)). The simulation evidence in this paper

indicates that it may have had less to do with transaction costs and more to do with other factors.

Our paper contributes to the understanding of systemic risk by understanding how the in-

teraction of portfolio managers in preparing portfolios may lead to inadvertent crowding with a

particular focus on transaction cost models. Our paper shows how crowding and transaction costs

are related and introduces a simple and very useful method to incorporate transaction costs into

the optimization framework.

There are many directions for further research in the area of crowding. A more detailed inves-

tigation of the tradeoff between trading liquidity and portfolio size might be interesting, including

whether there are obvious limits to a portfolio’s size given a trading strategy. One might also

investigate how different parameters of the portfolio construction process influence the relationship

between crowding and transaction costs. As portfolio size grows, it may also provide a linkage

between what constitutes a short-term investor and a longer-term investor, since transaction cost

constraints will force the honest and knowledgeable manager to be a longer-term investor.

There have been some studies relating crowding and momentum. It might be illuminating to

study the links between momentum and transaction costs. As stocks perform better (momentum),

they become a larger component of one’s portfolio and those stocks will represent a larger potential

sell to non-owners of that stock relative to other stocks, which might lead to higher transaction

costs and might imply more crowding than a simple measure would detect. Related to this is

the concept of how a portfolio manager’s effective universe of securities declines as the portfolio
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size grows and how crowding depends on the size of the investment universe and the number of

managers in that universe. There is also much needed theoretical work on crowding.

19



A Applied Optimization Details

Our optimizations involve three portfolio management techniques. This appendix describes the

optimization problem set up. All of our optimizations were performed in MATLAB using MAT-

LAB’s optimization routines, in addition to user-adjusted optimization routines, and the CPLEX

optimization tools from IBM.33

A.1 The Long Portfolio

Our approach is to maximize the expected return after transaction costs (or net alpha signal) of the

portfolio subject to a variety of constraints, including that the portfolio volatility be equal to the

60-month historical volatility of the S&P 50034, the weights of the portfolio sum to 1, the weights

of any individual stock are between 0 and 10%, and that the portfolio has the same exposure to

each sector as the benchmark universe of 5000 stocks.

max
w

w′µ − t̃c (13)

s.t. (14)

w′Σw = σS&P500 (15)

w′ι = 1 (16)

0 ≤ w ≤ 0.10 (17)

Sw = wBM
s (18)

where w are the weights of the stocks in the portfolio, µ is a vector of alpha signals for each stock,

t̃c is the net transaction costs, Σ is the variance-covariance matrix of stock returns, ι is a vector

of ones, S is an M -by-N matrix of zeros and ones representing the M sectors of the economy with

a 1 if the security is in that sector and a 0 if not, and wBM
s is an M -by-1 vector of sector weights

for the benchmark universe.

We also consider the reverse optimization problem whereby the portfolio is contructed by mini-

mizing the variance of the portfolio subject to achieving a target after transaction costs alpha equal

to historical annualized volatility of the S&P 500 divided by
√

12.

33Some of the optimizations were not solvable in feasible time with versions of MATLAB older than 2014a.
34In cases where it is not feasible to achieve the S&P 500 historical volatility, the closest feasible volatility is used

in the optimization.
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A.2 The Market Neutral Portfolio

Since many quantitative portfolio managers construct market neutral portfolios, we also investigate

crowding with the market neutral construction. The approach is to maximize the expected return

after transaction costs or net alpha of the portfolio, while constraining the portfolio to have a target

volatility equal to 5% over the risk-free rate, have leverage of 2 and be dollar-neutral (that is, sum

of long weights sum to 1 and sum of short weights sum to 1), the long portfolio is sector neutral

to the short portfolio, the weights of an individual stock cannot be less than -10% or greater than

10%35, and beta neutral (that is, the weighted average beta of the long portfolio equals the weighted

average beta of the short portfolio).

max
w

w′µ − t̃c (19)

s.t. (20)

w′Σw = 0.05 (21)

w′
Lι = 1 ∀wi ≥ 0 (22)

w′
Sι = −1 ∀wi ≤ 0 (23)

−0.10 ≤ w ≤ 0.10 (24)

w′β|wi≥0 = w′β|wi≤0 (25)

SwL = −SwS (26)

where w are the weights of the stocks in the portfolio, µ is a vector of alpha signals for each stock,

Σ is the variance-covariance matrix of stock returns, ι is a vector of ones, β is a vector of the

CAPM beta for each stock estimated on 5-year historical return data, S is an M -by-N matrix of

zeros and ones representing the M sectors of the economy with a 1 if the security is in that sector

and a 0 if not, wL and wL represents the weights of the long and short portfolio respectively.

We also consider the reverse optimization problem whereby the portfolio is contructed by mini-

mizing the variance of the portfolio subject to achieving a target after transaction costs alpha equal

to historical annualized volatility of the S&P 500 divided by
√

12.

A.3 The Market Neutral Portfolio with Liquidity Constraints

We constructed market neutral portfolios that incorporated reasonable self-imposed liquidity con-

straints. The optimization approach was exactly the same as for the market neutral portfolio,

35We initially started with smaller weight restrictions of 0.03 and -0.03, but many of the optimizations could not
be solved, thus we expanded the weight constraint.
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however we added a liquidity purchase constraint that is a fraction of the average daily trading

volume.

Liquidity constraints are relatively straightforward to add to the optimization problem. The

constraint takes the form of a portfolio manager not wishing to trade more than some percentage

of the average daily trading volume of the stock. That is, the constraint is Vtwit ≤ cADTVit

or wi ≤ c
Vt

ADTVit, where c represents the constant indicating the threshold percentage that the

portfolio manager wishes to trade in any given stock, Vt is the dollar value of the portfolio, and

ADTVit is the average daily trading volume of stock i at time t in dollars. A typical value for this

in the quantitative world is 15%.36

Since the liquidity constraint is essentially an upper bound weight constraint, it makes sense

to adjust the existing upper bound weight constraint for each stock rather than adding a new

series of constraints. Thus, the upper bound and lower bound weight constraint for every stock was

adjusted using the following algorithm. If the liquidity constraint was higher than the existing stock

constraint (i.e. 10%), then we didn’t alter the stock’s weight constraint. If smaller, we changed the

upper and lower bound constraint to be equal to the liquidity constraint value for each stock. We

did this for both the long and short side of the portfolio.

Unfortunately, when we added these constraints and increased the size of the portfolios, often-

times there was no feasible solution. Also, since our main goal was to investigate transaction costs

and their impact on portfolio construction, we removed the liquidity constraints for the randomly

generated portfolios.

A.4 Market Neutral Construction

One of the challenges of the market neutral optimization was to set up the problem so that leverage

can be limited. The method we employed for every one of the N stocks in our buy list, we created

an additional set of weights called buy weights and an additional set of sell weights. Thus, for

n stocks, we created weights, w1...wN , wb
1...w

b
N , and ws

1...w
s
N . We then constructed our entire

optimization with these 3N weights. In preparing our inputs for the optimization, we formulated

the following:

36The quantatitive manager might also have a total limit on the ultimate size of any position, for example, 3 times
the ADTV. We did not consider this additional consideration for this study.
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µ =




α1

...

αN

0
...

0




(27)

where there are 2N zero values in the column. The variance-covariance matrix was also modified

as follows:

Σ =




V (r1) C(r1, r2) · · · C(r1, rN) 0 · · · 0

C(r2, r1) V (r2) · · · C(r2, rN) 0 · · · 0
... 0 · · · 0

C(rN , r1) C(rN , r2) · · · V (rN) 0 · · · 0

0 · · · 0
... · · · · · · · · · · · · · · · 0

0 · · · · · · · · · · · · · · · 0




(28)

Most importantly, we altered the constraints in such a way as to keep the main constraints

on the final weights (i.e. w1...wN), while achieving our market-neutral leverage and dollar-neutral

constraints. Thus,

A =




1 0 · · · 0 −1 0 · · · 0 1 0 · · · 0

0 1 · · · 0 0 −1 · · · 0 0 1 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 1 1 · · · 1 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0 1 1 · · · 1




(29)

b =




0
1

1


 (30)

These constraints created an optimization whereby wi = wb
i −ws

i ,
∑nb

i wb
i = 1, and

∑ns
i ws

i = 1. We

also added constraints that wB ≥ 0 and wS ≥ 0. This ensured that our market neutral portfolio

was dollar neutral and had a leverage limited to 2. One could modify this for other forms of leverage

very easily. The weights we ultimately care about are the w. Any additional constraints on these
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weights, such as upper and lower bounds or sector constraints can be added to the constraint

matrix, A, simply by adding rows and placing zeros wherever the wb and ws occurred.

Although this solution enabled leverage and dollar-neutral constraints on our market neutral

portfolio, it did not guarantee that we didn’t have wasteful solutions such that we purchase and

sell pieces of the same stock. In order to reduce this possibility, we introduced a penalty function

into our objective function. That is,

max
w

w′µ − Λ(ι′wB + ι′wS) (31)

B Transaction Costs Construction

Due to the recursive nature of transaction costs, that is, the optimal weight of a stock depends

on the transaction costs of that stock, but the transaction costs, due to market impact, depends

on the optimal weight of the stock, we use the technique outlined in the paper of approximating

transaction costs by a quadratic function and show how to modify the optimization problem to

deal with this.

B.1 Long Only Portfolio

In order to incorporate our approximate transaction costs into the portfolio optimization problem,

we must modify the quadratic optimization program slightly.37 First, we must use a quadratic

optimization routine that can accept quadratic constraints, in addition to linear constraints.38

Second, we must modify the traditional portfolio optimization setup to work with transaction

costs.

The mathematical expression of the quadratic optimization with quadratic constraints is given

as,

min
x

1

2
x′Qx + x′c s.t. A′x ≤ b (32)

l′x + x′Q∗x ≤ r (33)

lb ≤ x ≤ ub (34)

37Some books discuss using binary constraints as a way of including transaction costs. Usually, this is because
those writers have not considered the empirical implications. It is extremely difficult for the optimizer to solve such
problems. In fact, even impossible.

38For example, CPLEX’s cplexqcp.
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where x is the vector of unknowns in the problem, Q is a symmetric positive semi-definite matrix

supplying the coefficients on the quadratic terms of the optimization problem, c is a vector of

coefficients related to the linear objective function, A is a matrix of coefficients for the equality

and inequality constraints, b is a vector of constraint values, l is a vector, Q∗ is a matrix, lb is a

lower bound vector, and ub is an upper bound vector.

In the traditional mean-variance optimization problem, we substitute the following variables;

x = w, the stock weights, Q = Σ, the variance-covariance matix of stock returns, c = 0, l = 0,

Q∗ = 0, A is chosen typically to have a row of ones and a row of expected returns, and the lower

and upper bounds are set as desired.

In order to create an optimal portfolio which minimizes the risk of the portfolio and achieves a

desired after-transaction cost alpha, the parameters chosen were as follows:

A =


 1 1 · · · 1

. . . . . . . . . . . .


 (35)

b =


 0

.


 (36)

Q = 2Σ (37)

Q∗ =




β̂1 0 . . . 0

0 β̂2 . . . 0
...

...
...

...

0 0 0 β̂N


 (38)

and l = −µ̃, µ̃ = µ − α̂, c = 0, and r = −µT , where µ̃ is a vector of the expected returns of each

stock minus the constant estimate in the transaction cost regression, µ is the expected return of

each stock, and µT is the after transaction costs expected return for the portfolio to match.

For the dual problem of maximizing the after transaction cost return, while achieving a target

variance, the parameters chosen are as follows:
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A =


 1 1 · · · 1

. . . . . . . . . . . .


 (39)

b =


 0

.


 (40)

Q =




β̂1 0 . . . 0

0 β̂2 . . . 0
...

...
...

...

0 0 0 β̂N


 (41)

Q∗ = Σ (42)

and l = 0, c = −µ̃, µ̃ = µ − α̂, and r = σT , where µ̃ is a vector of the expected returns of each

stock minus the constant estimate in the transaction cost regression, µis the expected return of

each stock, and σT is the target volatility for the portfolio to match.

B.2 Market Neutral

The market neutral problem is slightly more complicated. As explained previously, we create

phantom weights for the long and the short. In order to create an optimal portfolio which minimizes

the risk of the portfolio and achieves a desired after-transaction cost alpha, the parameters chosen

were as follows:

A =
[ ]

(43)

b =
[ ]

(44)

Q = 2Σ (45)

where Σ is as in Equation (28).

Q∗ =




0 0 0

0 Σ2 0
0 0 Σ2


 (46)
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where

Σ2 =




β̂1 0 . . . 0

0 β̂2 . . . 0
...

...
...

...

0 0 0 β̂N


 (47)

and l = −µ̃, µ̃ = [µ,−α̂,−α̂]′, c = 0, and r = −µT , where µ̃ is a 3 × N matrix of the expected

returns of each stock and the constant estimates in the transaction cost regression, µ is the expected

return of each stock, and µT is the after transaction costs expected return for the portfolio to match.

For the dual problem of maximizing the after transaction cost return, while achieving a target

variance, the parameters chosen are as follows:

A =
[

. . .

]
(48)

b =
[

.

]
(49)

Q =




0 0 0
0 Σ2 0

0 0 Σ2


 (50)

where

Σ2 =




β̂1 0 . . . 0

0 β̂2 . . . 0
...

...
...

...

0 0 0 β̂N


 (51)

Q∗ = 2Σ (52)

where Σ is as in Equation (28) and l = 0, c = −µ̃, µ̃ = [µ,−α̂,−α̂]′, and r = −σT , where µ̃ is a

3 × N matrix of the expected returns of each stock and the constant estimates in the transaction

cost regression, µ is the expected return of each stock, and σT is the after transaction costs risk

for the portfolio to match.
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Table 1: Summary of Crowding from Random Alpha Models and Transaction Costs from 2006 to February 2009

Risk Model 1 Risk Model 2 Risk Model 3
C Omega SR Max Min N̄ C Omega SR Max Min N̄ C Omega SR Max Min N̄

Alpha -0.00
Long Only
MN NTC -0.00 0.75 -3708.352 0.004 -0.004 645 -0.00 0.84 -2437.77 0.005 -0.005 611 0.00 0.50 -3296.92 0.006 -0.01 632
LONG NTC 0.58 -141.26 -140.911 0.076 0.000 63 0.60 -181.90 -175.48 0.072 0.000 75 0.59 -156.62 -184.22 0.079 0.00 64
Port. Size ($500M)
MN TC1 -0.00 0.27 -8.171 0.007 -0.006 567 0.00 -0.04 -7.84 0.006 -0.006 543 0.00 0.11 -7.49 0.009 -0.01 556
LONG TC1 0.49 -127.77 -0.512 0.079 0.000 67 0.45∗∗ -123.77 -1.00 0.071 0.000 89 0.46∗∗ -116.86 -0.84 0.080 0.00 71
Port. Size ($5B)
MN TC1 0.00 0.63 -15.027 0.007 -0.007 527 0.00 0.10 -13.88 0.010 -0.011 514 0.00 0.47 -13.98 0.009 -0.01 519
LONG TC1 0.42∗∗∗ -91.04 -1.427 0.077 0.000 102 0.38∗∗∗ -113.74 -1.59 0.072 0.000 138 0.38∗∗∗ -111.11 -1.71 0.077 0.00 114
Port. Size ($20B)
MN TC1 0.00 1.42 -21.240 0.013 -0.013 157 0.00 0.09 -20.03 0.014 -0.014 456 0.00 1.13 -20.05 0.014 -0.01 460
LONG TC1 0.50 294.63 -2.152 0.072 0.000 157 0.43∗∗∗ 151.19 -2.26 0.064 0.000 217 0.46∗∗∗ 241.19 -2.33 0.072 0.00 176

Note: This table presents various crowding measures from the constructed portfolios using various portfolio optimization structures that minimize volatility
using various risk models over the period 2010 to 2013. Risk Model 1,2, and 3 represent leading risk models used in the industry. The names are
purposely omitted so as to not identify any particular risk model. All numbers in the Exhibit are averages of various variables constructed from monthly
portfolios. The computations are based on 100 portfolios formed from random alpha signals. C represents our crowding measure as described in the paper,

C =

m
X

i=1

m
X

j=1

Sp:i,j − m

m2−m
. Ω measures the relative crowding between random signals and actual portfolios, Ω =

m
X

i=1

m
X

j=1

Sp:i,j − m

m
X

i=1

m
X

j=1

Sα:i,j − m

. A higher value means

that risk model creates more crowding. S.R. is a pseudo-Sharpe ratio for each portfolio defined as the portfolio’s annualized forward one-month return
minus transaction costs divided by its ex-ante standard deviation. Max represents the median of the maximum weight of any portfolio over all months,
Min represents the median of the minimum weight of any portfolio over all months, and N represents the average number of stocks across portfolios in any
given month over all months. The optimizations represent optimizations which attempt to minimize the variance of the portfolio subject to a target alpha
subject to various constraints as explained in the paper. Two transaction cost models are considered, model 1 (TC1) and model 2 (TC2). The transaction

costs include spreads and market impact of the following form: tcit =
˛

˛

˛

100sit/2

pit

˛

˛

˛
+ |cit|, where sit is the bid-ask spread of stock i at time t. For model 1,

cit = I
2

+ sgn(nit)ησit

˛

˛

˛

nit

VitT

˛

˛

˛

3/5

, where I = γσit
nit

Vit

“

Nit

Vit

”

1/4

, γ = 0.314, η = 0.142, σit is the daily volatility of stock return i at the beginning of month t,

Nit is the total amount of shares outstanding in the security, Vit is the average daily trading volume of the stock, T is the time interval in which the trade
takes place in number of days, for this paper we use T = 1, and nit represents the number of shares of the security the portfolio is trading. For model 2,
cit = Bit|nit|+ Cit|nit|

0.5, where Bit and Cit are parameters estimated by Northfield, nit is the number of shares to be purchased for security i in month t,
and cit is expressed in terms of percentage price movement. Model 2 exists only since March 2009. ∗∗∗, ∗∗ indicates the a 99% and 95% significant difference
resprectively in the average crowding from this portfolio and a portfolio that doesn’t consider transaction costs. MN is for the market-neutral portfolios and
LONG is for the long portfolios.
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Table 2: Summary of Crowding from Random Alpha Models and Transaction Costs from March 2009 to 2013

Risk Model 1 Risk Model 2 Risk Model 3
C Omega SR Max Min N̄ C Omega SR Max Min N̄ C Omega SR Max Min N̄

Alpha 0.00
Long Only
MN NTC -0.00 27.11 -42.646 0.006 -0.006 747 -0.00 55.14 -60.02 0.008 -0.008 731 -0.00 62.98 -32.70 0.008 -0.01 736
LONG NTC 0.37 -19958.74 -1.123 0.090 0.000 44 0.41 -24910.52 -8.03 0.087 0.000 48 0.39 -21522.80 -4.13 0.092 0.00 46
Port. Size ($500M)
MN TC1 -0.00 26.23 -7.132 0.007 -0.008 663 -0.00 27.70 -6.66 0.009 -0.009 652 -0.00 57.83 -6.51 0.010 -0.01 652
LONG TC1 0.32 -17843.58 0.794 0.090 0.000 50 0.27∗∗∗ -16434.66 0.32 0.085 0.000 66 0.31∗∗ -16026.43 0.53 0.091 0.00 56
Port. Size ($5B)
MN TC1 -0.00 26.74 -14.669 0.009 -0.009 594 -0.00 19.87 -13.70 0.012 -0.012 588 -0.00 51.50 -13.61 0.012 -0.01 586
LONG TC1 0.29∗∗∗ -15581.70 0.167 0.088 0.000 77 0.25∗∗∗ -13758.30 -0.08 0.082 0.000 106 0.27∗∗∗ -14462.44 -0.04 0.088 0.00 92
Port. Size ($20B)
MN TC1 -0.00 40.62 -22.275 0.013 -0.013 122 -0.00 27.97 -20.73 0.015 -0.016 503 -0.00 45.28 -21.27 0.015 -0.02 502
LONG TC1 0.38 -6862.70 -0.491 0.082 0.000 122 0.32∗∗∗ -7217.42 -0.66 0.075 0.000 159 0.36 -6539.03 -0.66 0.082 0.00 144
Port. Size ($500M)
MN TC2 -0.00 29.83 -7.346 0.007 -0.007 655 -0.00 45.16 -6.44 0.009 -0.009 644 -0.00 60.42 -6.73 0.010 -0.01 644
LONG TC2 0.34 -17964.16 0.960 0.091 0.000 43 0.33∗∗∗ -20577.48 0.51 0.088 0.000 47 0.33 -16635.14 0.80 0.093 0.00 44
Port. Size ($5B)
MN TC2 -0.00 28.76 -13.438 0.009 -0.009 591 -0.00 30.47 -11.91 0.011 -0.011 583 -0.00 58.93 -12.31 0.011 -0.01 581
LONG TC2 0.30∗∗ -16088.35 0.558 0.091 0.000 45 0.27∗∗∗ -16026.43 0.06 0.086 0.000 52 0.28∗∗∗ -14002.91 0.30 0.092 0.00 47
Port. Size ($20B)
MN TC2 -0.00 28.39 -19.124 0.010 -0.010 513 -0.00 1.88 -17.08 0.013 -0.013 506 -0.00 56.05 -17.56 0.014 -0.01 506
LONG TC2 0.26∗∗∗ -14485.43 0.157 0.091 0.000 49 0.22∗∗∗ -12348.61 -0.25 0.086 0.000 59 0.24∗∗∗ -13175.77 -0.12 0.091 0.00 53

Note: This table presents various crowding measures from the constructed portfolios using various portfolio optimization structures that minimize volatility
using various risk models over the period 2010 to 2013. Risk Model 1,2, and 3 represent leading risk models used in the industry. The names are
purposely omitted so as to not identify any particular risk model. All numbers in the Exhibit are averages of various variables constructed from monthly
portfolios. The computations are based on 100 portfolios formed from random alpha signals. C represents our crowding measure as described in the paper,

C =

m
X

i=1

m
X

j=1

Sp:i,j − m

m2−m
. Ω measures the relative crowding between random signals and actual portfolios, Ω =

m
X

i=1

m
X

j=1

Sp:i,j − m

m
X

i=1

m
X

j=1

Sα:i,j − m

. A higher value means

that risk model creates more crowding. S.R. is a pseudo-Sharpe ratio for each portfolio defined as the portfolio’s annualized forward one-month return
minus transaction costs divided by its ex-ante standard deviation. Max represents the median of the maximum weight of any portfolio over all months,
Min represents the median of the minimum weight of any portfolio over all months, and N represents the average number of stocks across portfolios in any
given month over all months. The optimizations represent optimizations which attempt to minimize the variance of the portfolio subject to a target alpha
subject to various constraints as explained in the paper. Two transaction cost models are considered, model 1 (TC1) and model 2 (TC2). The transaction

costs include spreads and market impact of the following form: tcit =
˛

˛

˛

100sit/2

pit

˛

˛

˛ + |cit|, where sit is the bid-ask spread of stock i at time t. For model 1,

cit = I
2

+ sgn(nit)ησit

˛

˛

˛

nit

VitT

˛

˛

˛

3/5

, where I = γσit
nit

Vit

“

Nit

Vit

”

1/4

, γ = 0.314, η = 0.142, σit is the daily volatility of stock return i at the beginning of month t,

Nit is the total amount of shares outstanding in the security, Vit is the average daily trading volume of the stock, T is the time interval in which the trade
takes place in number of days, for this paper we use T = 1, and nit represents the number of shares of the security the portfolio is trading. For model 2,
cit = Bit|nit|+ Cit|nit|

0.5, where Bit and Cit are parameters estimated by Northfield, nit is the number of shares to be purchased for security i in month t,
and cit is expressed in terms of percentage price movement. Model 2 exists only since March 2009. ∗∗∗, ∗∗ indicates the a 99% and 95% significant difference
resprectively in the average crowding from this portfolio and a portfolio that doesn’t consider transaction costs. MN is for the market-neutral portfolios and
LONG is for the long portfolios.
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Figure 1: Actual Trading Costs with Approximate Trading Costs for AT&T. This figure shows the

trading costs, t̃c, using transaction cost model 1 for December 2013.
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Figure 2: Actual Trading Costs with Approximate Trading Costs for AGL Resources. This figure

shows the trading costs, t̃c, using transaction cost model 1 for December 2013.
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Figure 3: Crowding over Time for Random Alpha Models’ Long Portfolios. This figure represents the crowding measures for long-only
portfolios constructed every month from 2006 to 2013 using three industry risk models. At every point in time, actual data was used to
construct 100 random alpha signals and consequently 100 optimized portfolios. The vertical line represent that starting month of the

quantitative crisis of 2007. Two transaction cost models are considered, model 1 (TC1) and model 2 (TC2). These graphs only show
the crowding numbers for portfolios created with model 1. The transaction costs include spreads and market impact of the following

form: tcit =
∣∣∣100sit/2

pit

∣∣∣ + |cit|, where sit is the bid-ask spread of stock i at time t. For model 1, cit = I
2 + sgn(nit)ησit

∣∣∣ nit
VitT

∣∣∣
3/5

, where

I = γσit
nit
Vit

(
Nit
Vit

)1/4
, γ = 0.314, η = 0.142, σit is the daily volatility of stock return i at the beginning of month t, Nit is the total

amount of shares outstanding in the security, Vit is the average daily trading volume of the stock, T is the time interval in which the

trade takes place in number of days, for this paper we use T = 1, and nit represents the number of shares of the security the portfolio
is trading. LONG NTC is the monthly crowding for long-only portfolios that do not consider transaction costs, LONG TC1 LV1, LV2,

and LV3 are long portfolios that consider transaction costs with portfolios of size $500M, $5B, and $20B respectively.
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Figure 4: Crowding over Time for Random Alpha Models’ Market Neutral Portfolios. This figure represents the crowding measures for
long-only portfolios constructed every month from 2006 to 2013 using three industry risk models. At every point in time, actual data
was used to construct 100 random alpha signals and consequently 100 optimized portfolios. The vertical line represent that starting

month of the quantitative crisis of 2007. Two transaction cost models are considered, model 1 (TC1) and model 2 (TC2). These graphs
only show the crowding numbers for portfolios created with model 1. The transaction costs include spreads and market impact of the

following form: tcit =
∣∣∣ 100sit/2

pit

∣∣∣ + |cit|, where sit is the bid-ask spread of stock i at time t. For model 1, cit = I
2 + sgn(nit)ησit

∣∣∣ nit
VitT

∣∣∣
3/5

,

where I = γσit
nit
Vit

(
Nit
Vit

)1/4
, γ = 0.314, η = 0.142, σit is the daily volatility of stock return i at the beginning of month t, Nit is the total

amount of shares outstanding in the security, Vit is the average daily trading volume of the stock, T is the time interval in which the

trade takes place in number of days, for this paper we use T = 1, and nit represents the number of shares of the security the portfolio
is trading. LONG NTC is the monthly crowding for long-only portfolios that do not consider transaction costs, LONG TC1 LV1, LV2,

and LV3 are long portfolios that consider transaction costs with portfolios of size $500M, $5B, and $20B respectively.
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Figure 5: Crowding over Time for Random Alpha Models’ Long and Market Neutral Portfolios using All Risk Models. This figure
represents the crowding measures for long-only portfolios constructed every month from 2006 to 2013 using three industry risk models.

At every point in time, actual data was used to construct 100 random alpha signals and consequently 100 optimized portfolios. The
vertical line represent that starting month of the quantitative crisis of 2007. Two transaction cost models are considered, model 1

(TC1) and model 2 (TC2). These graphs only show the crowding numbers for portfolios created with model 1. The transaction costs

include spreads and market impact of the following form: tcit =
∣∣∣100sit/2

pit

∣∣∣ + |cit|, where sit is the bid-ask spread of stock i at time t.

For model 1, cit = I
2 + sgn(nit)ησit

∣∣∣ nit
VitT

∣∣∣
3/5

, where I = γσit
nit
Vit

(
Nit
Vit

)1/4
, γ = 0.314, η = 0.142, σit is the daily volatility of stock return

i at the beginning of month t, Nit is the total amount of shares outstanding in the security, Vit is the average daily trading volume

of the stock, T is the time interval in which the trade takes place in number of days, for this paper we use T = 1, and nit represents
the number of shares of the security the portfolio is trading. LONG NTC RM1, RM2, and RM3 represent the monthly crowding for

long-only portfolios that do not consider transaction costs using risk model 1, risk model 2 and risk model 3 respectively. LONG TC1
LV3 RM1, RM2, and RM3 are long portfolios that consider transaction costs with portfolios of size $20B using risk model 1, risk model

2 and risk model 3 respectively.
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